Loading Events

Department of Mathematics Calendar

Katherine Raoux, Michigan State University, τ-invariants for knots in rational homology spheres

  • This event has passed.
April 11, 2018 | 10:40 am - 11:30 am EDT

Event Navigation

Using the knot filtration on the Heegaard Floer chain complex, Ozsváth and Szabó defined an invariant of knots in the three sphere called τ(K) and showed that it is a lower bound for the 4-ball genus. Generalizing their construction, I will show that for a (not necessarily null-homologous) knot, K, in a rational homology sphere, Y, we obtain a collection of τ-invariants, one for each spin-c structure on Y.  In addition, these invariants can be used to obtain a lower bound on the genus of a surface with boundary K properly embedded in a negative definite 4-manifold with boundary Y.



April 11, 2018

10:40 am - 11:30 am
Event Category:
SAS 4201