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Cardiovascular System Model

Conservation of volume
𝑑𝑉!,# /𝑑𝑡 = 𝑞#$ − 𝑞%&'

Ohm’s law

𝑞# =
𝑝#$ − 𝑝%&'

𝑅#

𝑞()*(+ = * 𝑞# if 𝑝#$ > 𝑝%&'
0 otherwise

Pressure-volume relation
𝑉# − 𝑉&$,# = 𝐶# 𝑝#$' − 𝑝+,'

Pressure in the heart
𝑝- = 𝐸- 𝑡 𝑉- − 𝑉&$,-

Time-varying elastance function 𝐸-(𝑡)
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Mariam Kharbat and Robert Sternquist
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Results
o Subset selection analyses 

⁃ Right side heart parameters most influential for 𝑟.
⁃ 𝑇/0(, 𝑇00( 𝑎𝑛𝑑 𝜏/0) are the most influential for 𝑟1
⁃ 𝑅)(), 𝑅2(), 𝑅3(), 𝑅3(, 𝑅!( are consistently noninfluential

o Model predictions
⁃ Increase in 𝑅3/𝑅! and a decrease in 𝐶3)/𝐶!) in PH relative to normotension
⁃ 𝑟. improves CO and static max/min prediction
⁃ 𝑟1 improves RA, RV (drastically) and PA (marginally) fit to waveforms

o Treatment 
⁃ Changes in resistance are more influential on mPAP than compliance 
⁃ Normotensive PA pressure ranges (below 20 mmHg) were achieved for T5 

and T8: “cured” after treatment 

Discussion
Results show that in among the different data types, the same set of parameters, 
excluding the timing parameters, were still most influential as we moved from static 
data to time varying data. The one set of consistently non-influential parameters is 
agreeing with previous studies. The compliance and elastance ratios increased and 
decreased respectively, but this hasn’t been explored with larger sets of data, 
which could possibly differentiate between PH severities. Overall, model outcomes 
are consistent with physiological understanding of the disease. Future work will  
consist of developing a model selection program to better differentiate PH 
severities. 
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Data
5 PH patients – RHC measurements:

o right atrium/ventricle pressure 
waveforms 

o main pulmonary artery, and pulmonary
artery wedge pressure waveforms

o Cardiac output

Systolic and diastolic systemic arterial
pressure measured with a cuff

Treatment
Parameter

𝑅3 𝑅! 𝐶!) 𝐶3)
Vasodilator ⇩ ⇩ ⇧ ⇧

BPA ⇩ ⇧
BPA with 

vasodilator
⇩ ⇩ ⇧ ⇧

VASODILATOR BPA BOTH

Compartment model analogous to
an electric circuit
o Pressure 𝑝 (mmHg) – Voltage
o Flow 𝑞 (mL/s) – Current
o Volume 𝑉 (mL) – Charge
o Resistance R (mmHg⋅s / mL) –

Resistance
o Compliance C (mL/mmHg) –

Capacitance

25 parameters and 8 states

Simulate 2 types of PH treatments to improve
hemodynamic predictions.
o treating by reducing resistance with and

without an increase in compliance
o predictions are computed and compared to

normotensive predictions.

Parameter Subset Selection and Inference
Sensitivity and correlation analyses determine which parameters, 𝜃4 , are sensitive and identifiable.
Optimizing a subset of such parameters minimizes least squares cost for the model to better fit the data.

Sensitivity Analysis 
The sensitivity matrix, 𝑆, and ranking parameters from most to least sensitive is the first step in
determining a parameter subset. Sensitivity matrix, parameter sensitivity, and sensitivity ranking are
respectively defined by

Subset selections
Identifiable parameters determined
from the covariance matrix.
Parameters with pairwise
correlation below 𝛾 < .95
identifiable

=𝑐#4 =
𝐶#4
𝐶##𝐶44

< 𝛾 𝐶 = S5S 6.

Optimization
Influential, identifiable parameter
subsets are estimated using least
squares optimization (using the
Levenberg Marquardt method)
minimizing the least squared cost,
𝐽#.

𝐽# = 𝒓𝒊𝒕𝒓𝒊, 𝒓𝒊 = 𝒓𝟏, 𝒓𝟐

Residual Functions
Residual vectors capture the
relative differences between
measured data and model
predictions.

𝒓𝟏 = 𝒓𝒔 [static values only]

𝒓𝟐 = 𝒓𝒔, 𝒓𝒓𝒂, 𝒓𝒓𝒗, 𝒓𝒑𝒂 [static and 
dynamic values]

𝒓𝒔 =
1
𝑁&

𝑦 − 𝑦'

𝑦'
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Overview
Pulmonary hypertension (PH) is a deadly and progressive disease characterized by
pulmonary arterial pressure above 25 mmHg. This study uses a 0D system of
differential equations to predict pressure, flow, and volume of the cardiovascular
system. Influential, identifiable parameters are optimized to improve the model fit to
the data. By adjusting resistance and compliance values, we simulate the effect of
PH treatments on pressure. Results show time-varying data and parameters improve
right heart predictions. PH patients “treated” using surgical intervention reach
normotensive ranges. Overall, model outcomes are consistent with physiological
understanding of the disease.


