Skip to main content

Loading Events

« All Events

  • This event has passed.

Symbolic Computation Seminar: Máté Telek , University of Copenhagen, Reaction networks and a generalization of Descartes’ rule of signs to hypersurfaces

April 18 | 1:30 pm - 2:30 pm EDT

The classical Descartes’ rule of signs provides an easily computable upper bound for the number of positive real roots of a univariate polynomial with real coefficients. Descartes’ rule of signs is of special importance in applications where positive solutions to polynomial systems are the object of study. This is the case in reaction network theory where variables are concentrations or abundances. Motivated by this setting, we give conditions based on the geometrical configuration of the exponents and the sign of the coefficients of a polynomial that guarantee that the number of connected components of the complement of the hypersurface where the defining polynomial attains a negative value is at most one or two. Furthermore, we discuss how these results can be applied to show that the parameter region of multistationarity of a reaction network is connected.
Meeting ID: 982 9131 6707
Password: 950944


April 18
1:30 pm - 2:30 pm EDT
Event Category:


SAS 4201